LU Decomposition Scheme for Solving m-Polar Fuzzy System of Linear Equations
نویسندگان
چکیده
منابع مشابه
A Genetic Programming-based Scheme for Solving Fuzzy Differential Equations
This paper deals with a new approach for solving fuzzy differential equations based on genetic programming. This method produces some trial solutions and seeks the best of them. If the solution cannot be expressed in a closed analytical form then our method produces an approximation with a controlled level of accuracy. Furthermore, the numerical results reveal the potential of the proposed appr...
متن کاملSsT decomposition method for solving fully fuzzy linear systems
The SST decomposition method for solving system of linear equations make it possible to obtain the values of roots of the system with the specified accuracy as the limit of the sequence of some vectors. In this topic we are going to consider vectors as fuzzy vectors. We have considered a numerical example and tried to find out solution vector x in fuzzified form using method of SST decomposition.
متن کاملDECOMPOSITION METHOD FOR SOLVING FULLY FUZZY LINEAR SYSTEMS
In this paper, we investigate the existence of a positive solution of fully fuzzy linear equation systems. This paper mainly to discuss a new decomposition of a nonsingular fuzzy matrix, the symmetric times triangular (ST) decomposition. By this decomposition, every nonsingular fuzzy matrix can be represented as a product of a fuzzy symmetric matrix S and a fuzzy triangular matrix T.
متن کاملLU-Decomposition with Iterative Refinement for Solving Sparse Linear Systems
In the solution of a system of linear algebraic equations Ax = b with a large sparse coefficient matrix A, the LU-decomposition with iterative refinement (LUIR) is compared with the LU-decomposition with direct solution (LUDS), which is without iterative refinement. We verify by numerical experiments that the use of sparse matrix techniques with LUIR may result in a reduction of both the comput...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2020
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2020/8384593